Course details
Semester
- Autumn 2024
- Monday, October 7th to Friday, December 13th
Hours
- Live lecture hours
- 20
- Recorded lecture hours
- 0
- Total advised study hours
- 80
Timetable
- Thursdays
- 14:05 - 14:55 (UK)
- Thursdays
- 15:05 - 15:55 (UK)
Course forum
Visit the https://v2.maths-magic.ac.uk/forums/magic067-integrable-systems
Description
We will consider mainly the finite-dimensional Hamiltonian systems with integrability understood in Liouville's sense.
The content covers both classical techniques like separation of variables in the Hamilton-Jacobi equation as well as modern inverse spectral transform method.
The main examples include Kepler problem, geodesic flow on ellipsoids, Euler top, Toda lattice, Calogero-Moser system and Korteweg- de Vries equation.
Prerequisites
Syllabus
Hamilton-Jacobi equation and separation of variables. Geodesics on ellipsoids and Jacobi inversion problem for hyperelliptic integrals.
Euler equations on Lie algebras and coadjoint orbits. Multidimensional Euler top, Manakov's generalisation and Lax representation.
Toda lattice and inverse spectral transform method. Direct and inverse spectral problems for Jacobi matrices and explicit solution to open Toda lattice.
Calogero-Moser system and Hamiltonian reduction. Scattering in Calogero-Moser system.
Korteweg-de Vries equation as an infinite-dimensional integrable system. Integrals and Hamiltonian structures, Lenard-Magri scheme.
Lecturer
-
AV
Professor Alexander Veselov
- University
- Loughborough University
Bibliography
No bibliography has been specified for this course.
Assessment
The assessment for this course will be released on Monday 13th January 2025 at 00:00 and is due in before Friday 24th January 2025 at 11:00.
Assessment for all MAGIC courses is via take-home exam which will be made available at the release date (the start of the exam period).
You will need to upload a PDF file with your own attempted solutions by the due date (the end of the exam period).
If you have kept up-to-date with the course, the expectation is it should take at most 3 hours’ work to attain the pass mark, which is 50%.
Please note that you are not registered for assessment on this course.
Files
Only current consortium members and subscribers have access to these files.
Please log in to view course materials.
Lectures
Please log in to view lecture recordings.